Algebra III Mid-Term Examination. September 2004

INSTRUCTIONS. Answer any five questions. Q denotes the field of rational numbers. All fields are assumed to be of characteristic zero.

- 1. (a) Let L be an algebraic extension of a field F. Prove that every subring of L which contains F is a field. (5 Marks)
 - (b) Let $k \subset F \subset L$ be a tower of fields. Prove that [L:k] = [L:F][F:k]. (5 Marks)
- 2. (a) Let F be a field and let f, g be two polynomials in F[X]. If L is an extension of F, prove that the g.c.d of f and g in F[X] equals that in L[X]. (4 Marks)
 - (b) Let F be a finite extension of \mathbb{Q} . Show that there exists an element $\theta \in F$ such that $F = \mathbb{Q}(\theta)$. (6 Marks)
- 3. (a) Let L be a subfield of the field of complex numbers such that its degree over $\mathbb Q$ is finite. If -1 is a sum of squares in L, prove that $[L:\mathbb Q]$ is an even number. (4 Marks)
 - (b) Let $\phi: F \to K$ be a field isomorphism and $f \in F[X]$ be a polynomial. Let L and L' be the splitting fields of f and $\phi(f)$ over F and K respectively. How many field isomorphisms $\phi_i: L \to L'$ exist such that ϕ_i restricted to F equals ϕ ? Justify your answer. (6 Marks)
- 4. Let L be a degree 6 extension of \mathbb{Q} .
 - (a) Show that L contains at most one degree 2 extension of \mathbb{Q} . (2 Marks)
 - (b) If L contains more than one degree 3 extension of \mathbb{Q} , then show that L is a Galois extension of \mathbb{Q} . (4 Marks)
 - (c) Give an example of a degree 6 Galois extension of Q which contains exactly one degree 3 extension of Q. Give an example of a non-Galois extension of degree 6 over Q. (4 Marks)
- 5. (a) Let L be a Galois extension of \mathbb{Q} with Galois group S_n , the permutation group on n symbols. Prove or disprove: L is a splitting field of a degree n irreducible polynoimal in $\mathbb{Q}[X]$. (5 Marks)
 - (b) Determine the Galois group of $(X^2-2)(X^3-2)$ over \mathbb{Q} . (5 Marks)
- 6. (a) Let K be a Galois extension of \mathbb{Q} with Galois group G. Let $F \subset K$ be a field corresponding to the subgroup H of G. Show that N(H)/H is the group of automorphisms of F (here N(H) denotes the normaliser of H in G.) (5 Marks)
 - (b) Let K be a Galois extension of \mathbb{Q} . Let $f \in \mathbb{Q}[X]$ be an irreducible polynomial such that f = g.h in K[X] with g, h monic irreducible. Show that there exists an automorphism σ of K such that $\sigma(g) = h$. Give an example when this conclusion is not valid if K is not a Galois extension of \mathbb{Q} . (5 Marks)
- 7. (a) Find the splitting field of the polynomial $X^4 4X^2 1$ over $\mathbb{Q}(\sqrt{5})$. (3 Marks)
 - (b) Find the Galois group of the above polynomial over \mathbb{Q} and over $\mathbb{Q}(\sqrt{5})$. (7 Marks)